Architecture of the NBS Pipelined Image Processing Engine

Ernest W. Kent, Michael O. Shneier, and Ronald Lumia
National Bureau of Standards ®

James M. Herriman, Randall L. Luck, and Gerald S. Henrici
Digital/Analog Design Associates, Inc,

Abstract

The Sensory-Interactive Robotics Group of the National Bureau of
Standards is producing PIPE (Pipelined Image Processing Engine),
an experimental, multi-stage, multi-pipelined image processing
device for research in low-level machine vision. The device can
acquire images from a variety of sources, such as analog or
digital television cameras, ranging. devices, and conformal
mapping arrays. It can process sequences of images in real time,
through a series of local neighborhood and point operations,
under the control of a host device. Its output can be presented
to such devices as monitors, robot vision systems, iconic to
symbolic mapping devices, and image processing computers (Figure
1.)

In addition to a fbruard flow of images through successive stages
of operations as in a traditional pipeline, other paths between
the stages of the device permit concurrent, interacting
pipelining of image flow in other directions. In particular,
recursive operations returning images into each stage, and

#This work is a product of United States Government personnel,
and is not subject to U.S. Copyright.

feedback of the results of operations from each stage to the
preceding stage are supported in this manner., 7This architecture
facilitates a variety of relaxation operations, interactions of
images over time, and other interesting functions. HNumerous
operations are supported; within each astage these inoclude
arithmetic and Boolean neighborhood operations on images.
Between-stage operations on each pixel include thresholding,
Boolean and arithmetic operations, functional mappings, and a
variety of functions for combining pixel data oonverging via the
multiple pipelined image paths.

The device also implements several alternative processing modes.
Some operate within each stage, for example to implement "MIMD®
operations specific to regions of interest defined by the host
device or by previous operations on the image., Others operate
between stages, for example to support variable resolution
pyramids,

Alntroduction

PIPE was designed as a pre-processor for iconic (spatially
indexed) images. It is intended to serve as a "front end® for the
vision portion of a multi-modal sensory processing system being
developed for real-time robot guidance applications at NBS. It is
appropriate, however, for any sort of iconic image, such as those
produced by tactile sensor arrays or range-image systems. The
processed images are intended for a host machine which will
perform global operations and/or image understanding procedures,
such as labeling, on the result., Thus, PIPE itself accepts
iconic data images, and typically produces iconic images whose
pixel values are Boolean vectors describing local properties of
the pixel neighborhood. PIPE relieves the host of costly low-
level local processing which muat be performed over the entire
image space, PIPE is currently under construction, with

prototypes expected in the fall of 1984, After a period of
experimentation and evaluation, PIPE will be refined and,
ultimately, reduced to & VLSI implementation,

We have also designed an associated devieé, ISMAP, which will map
processed iconic images into symbolie (property-indexed)
structures. ISMAP describes the processed images produced by PIPE
by mapping the iconic image of Boolean vectors produced by PIPE
into histograms and other types of ordered list structures in the
address space of the host device, in real time. A major function
of ISMAP is to map PIPE's image addresses into a space ordered by
symbolic picture feature descriptors. This sves the host device
the necessity of scanning the processed image to find locations
of items of interest.

PIPE's design, discussed in this report, was developed with
several principal goals in mind. These were: 1) real-time
processing of images at field-rate, 2) provision for interactions
between related images, such as those arising from dynamic image
sequences or from stereoscopic views, 3) provision of the ability
to apply different algorithms to different regions of the image
in real time, and 84) provision for the ability to guide
processing by knowledge-based commands and "hypothesis images®
supplied from the host,

PIPE actually consists of three, concurrent, interacting, image~
flow pathways. These interconnect a variable number of identical
modular image-processing stages. The three pathways are: the
forward pathway, which acts as a traditional pipelined image-~-
processing path; the retrograde pathway, which carries images in
the opposite direction (i.e., from the output of a stage to the
input of its predecessor); and the recursive pathway, which
carries an image from the output of a stage back into the input
of the same Stage.

Each stage can perform two simultaneous and independent

*UoTJRINBTJUC) Bupsssoold-eFaur SON 9Y3 JO SIUSUDTD JYI0 03 SUOTIRTAL 83] puB JOSSID0I] HdId UL T NI

77— 7]

arithmetic or Boolean neighborhood operations. The forward,
recursive, and retrograde pathways, in any ocombination, may
accept images from the result of either of these operations. At
the input to each stage, the images carried by the three pathways
may be combined by any arithmetic or Boolean operation. Any
arithmetic or Boolean operation may then be performed on the
resulting image, prior to its storage in one of two buffers
within the stage.

Within each stage, the two neighborhood operators may act on an
image in either of the two buffers. Following the neighborhood
operations, and prior to output from the stage, the resulting
images may undergo a further transformation by an arbitrary
function of one or two arguments. If the function is of two
arguments, the second argument may be drawn from a variety of
sources within the stage, including the contents of the
homologous pixel in the buffer which did not supply the image for
the neighborhood operations,

In an alternative mode, one of the two image buffers in each
stage may serve as a map for selecting the processing algorithas
being applied to the contents of the other buffer. In this mode,
PIPE functions as an MIMD machine, with one buffer defining
regions of interest over which each set of algorithms shall be
applied, on a pixel-by-pixel basis, as the image is processed. In
the prototype version, sixteen such alternative processing
algorithms may be selected for different regions of the image
within a single field time. However, this is easily increased (up
to 256 processing algorithms) simply by adding additional storage
to each stage to hold the appropriate tables and parameters.

A third mode permits PIPE to function as a multi-resolution
pyramid machine, In this mode, the images carried by the forward
pathway are reduced in size by one half at each stage, while
sizes of the images carried by the retrograde pathway are doubled
at each stage. The images carried by the recursive pathway remain

unchanged in resolution. Any combination of stages may operate in
this mode, under program control,

In any mode, the operations of every stage are vompletely
independent, and can be completely roconrtturod 1n thp inter-
field time by an associated atage aontrol unit, wh:oh 1: tura may
select atage configurations from a stored sequence, or on coamand
from the host. All operations run in real time, 30 that images
pass between atages at field rate (16 msec.).

In addition to the pathways mentioned, PIPE contains four "wild
card® busses which may be used to transport images from the host,
or from any buffer in the machine, into any other buffer in the
machine, It also has two special stages, for input and output,
which communicate with the sensors and the host, or with special
suxiliary devices., DMA channels allow video display or streaming
input and output from any buffer in the machine.

Rationale and Qverview

PIPE is an attempt to seek a compromise between a fixed function,
hardware image processor and a fully general purpose, parallel
computer. Through its design, it facilitates a variety of common
and important image-processing techniques, as well as several
experimental approaches. Within the broad limits of the processes
it supports, it is an extremely fast and flexible devioce, On the
other hand, it is not a general purpose computer and it is not
possible to program arbitrary algorithms on it, or at least not
in an efficient manner. In most cases we have found that
processes which are well suited to PIPE may be substituted for
others which are not, while accomplishing the same image-
processing goal, PIPE is intended as a processor for local
operations on images; it is not designed to perform efficiently
operations requiring global knowledge of the image. It is
intended that PIPE operate in conjunction with a host which will

perform global image operations, relieved of the processing
burden of large scale repetitive local operations., {(However,
extensions to PIPE are under consideration to perform common
global functions such as region labeling.) ;;?

Other extensions to PIPE are also planned into ‘the imitial
design. The 3 x 3 neighborhood operators in each stage of PIPE
reside on a separate board from the rest of the stage. This is
intended to facilitate changes to the stages as faster
neighborhood operator chips become available that can handie
larger neighborhoods in the required time, With current
technology, a 5 x 5 neighborhood would be easily attainable at
slightly greater cost per stage. For our application, ir which
the camera is mounted on a mobile arm, the 256 x 256 image size
is adequate, but this 4is not necessarily true in all
applications. There is no fundamental feature of PIPE's design,
however, which limits image size. A version of PIPE which can
handle 512 x 512 images is already under design, and extensions
to 2048 x 2048 are contemplated. It is also planned to enhance
the capabilities of PIPE by adding pre-processors. A processor,
already being designed, will be inserted bdefore the inmput stage
to perform conformal mappings (Figure 1). This will, for example,
allow rotations in the image plane and range changes (image
scaling) to be converted to image translations. The image
differencing and motion-detection abilities of PIPE will then
simplify analysis of the changes.

The prototype version of PIPE consists of a sequence of identical
processors (Figure 2.), sandwiched between a special input
processor and a special output processor, The input processor
accepts an image from any device that encodes two-dimensional
images. It serves as a buffer between the rest of the processors
and the outside world. Each successive processing stage receives
image data in an identical format, operates on it, and passes it
on to the next stage for further processing. This sequence is
repeated every television field~time., When an image emerges at

" g4Iq up sefeqs Suyssscaad uUSAIBq SUOTIOAULOD JOfEH 12 FUNDLA

tse far end of the sequence, it is processed by the special
output stage and presented to a host device, such as a robot
vision system or a serial computer,

The processors between the input and output stages are all
identical and interchangeable, but can each perforam ditterent
operations on the image sequences that they encounter. Usually,
each processor receives three input images and transmits three
output images. The input images arrive from the processing stage
immediately behind each stage, from the processing stage
immediately ahead, and from a result of the preceding operation
performed by the processor itself. Similarly, the results of
processing its current image are transmitted by each stage to the
next processing stage in the sequence, to the immediately-
" preceding processing stage, and recursively back into the
processor itself. These three outputs are not necessarily
identical, and each may. furnish part or all of the inputs to the
other processors for the subsequent step in processing. The
three fnputs may be weighted and combined in each processor, in
any fashion, before they are processed. In addition to these
input and output paths, four 'ﬁildcard' paths are provided for
both input and output. These paths are common to all stages, so
that only one stage can write to a particular wildcard path at a
time. The wildcard paths allow images to be moved arbitrarily
between stages, instead of having to step through from stage to
stage. There are no restrictions on the number of destinations
for an image output to a wildcard path.

There are numerous reasons for requiring the three input and
output paths from each processor. It is clear that the forward
path allows a chain of operations to be performed, giving rise in
real time to a transformed image (with a constant delay).
Similarly, the recursive path allows 8 pipeline of arbitrary
length to be simulated by each stage, and also facilitates the
use of algorithms that perform many iterations before converging
to a desired result (e.g., relaxation algorithms, or the

simulation of large neighborhood operators by successive
applications of smaller neighborhood operators). The path to the
preceding processor allows operations to be performed using
temporal as well as spatial neighborhoods., It lll&.lllows
information inserted at the output stage by the ‘host to
participate in the processing directly. This, for example,
allows expectations or image models to be used to guide the
processing at all levels, on a pixel-by-pixel basis,

Although there are physically only three pathways between stages
(excluding the "wildcard" busses), every pixel neighborhood in an
image is processed and sent over these paths in every field time.
The result is that PIPE simulates a fully parallel data flow
machine; each pixel appears to have a real-time, private line to
an homologous pixel processor in tlrget stages.

Detalls of Architecture

The organization of the image-processing section of PIPE,
excluding the input and output processors, is shown in Figure 2,
PIPE is composed of a variable number of identical, modulér,
image~processing stages. Every stage contains two field buffers,
each of which holds a processed version of the image from a
single field of data. During each field time, each stage
operates on one member of a set of consecutive image fields, The
stages contain fast special-purpose logic that processes the
contents of the buffers and carries out inter-stage interactions
in a single field-time (16.67 msec). Each stage has an
associated stage-control unit that can redefine the process to be
performed by the stage and change its parameters during the
inter-field interval. The stages are connected by three distinct
data paths, which are shown in Figure 2.

PIPE's main processing tool is a neighborhood operator., This may
comprise either an arithmetic convolution operator or a set of

1o

arbitrary Boolean operators, Additional operations are also
possible; they are discussed in more detail below. The
neighborhood operations (either arithmetic or Boolean) are
performed on a neighborhood of each pixel in a atago'bqtfcr. Two
such operations may be performed independently in a ain;ie field-
time, on the neighborhood of every pixel in the'tioid; The
output of these operators can be sent to any of the paths out of
the stage.

The image resulting from applying one of these neighborhood
operators is carried forward into the subsequent stage (perhaps
after undergoing other associated transformations). Similar
processing occurs in all stages simultaneously, so that the
system forms an image pipeline into which new images are accepted
at field rate., This image~flow processing follows the path
indicated {n Figure 2 as, ®"pixel-by-pixel forward
transformation® At every processing stage, different processes
may be applied to the image., Interactions between stages,
detajiled below, extend the processing to the "temporal
neighborhood® of the pixel, permitting time-domain operations on
the scene. These are useful, for example, in the analysis of
motion., '

A second "backward"®™ data flow path is supported by each stage.
This path, indicated in Figure 2 as, "pixel-by~pixel retrograde
transformation feedback flow™, brings the output of one of the
neighborhood operators of each stage back to combine with the
image currently entering the preceding stage. The source of the
data for this second, "retrograde® pathway may be the same as for
the forward transformation, or may be the second neighdborhood
.operator applied to each pixel neighborhood at the same time that
the forward transformation operator is applied. Thus, the
retrograde transformation may be independent of the forward
transformation, or be identical with it. The results of the
retrograde operation from one stage are carried into the
preceding stage, permitting interaction forward in time (i.e.,

H

interaction with subsequent images; notice that the forward
direction with respect to the pipeline stages corresponds to
images that arrived earlier in time,) This permits feedback loops
to be formed in the image flow processins,

Neighborhood operators can be used for a wide variety ;t'image
processing tasks (e.g., averaging and noise reduction operations,
edge, line, and point labeling operators, region growing, region
shrinking, and finding (non-) minima and (non-~) maxima). Some of
these functions permit or require repetitive recursive
operations., That is, they require that the image resulting from
one application of the operator be the input for a subsequent
application of the same operator. This implies that the stage's
field buffer must be able to be loaded from the output of its owun
forward or backward transformation operators. The alternative
would be to accomplish recursive operations by cascading the
image through multiple identical operations in sequential stages,
which could require an arbitrary number of stages. In Figure 2
the recursive path provided by PIPE is labeled, “"pixel-by-pizel
within-stage recursion®. It is shown here originating from the
forward pathway, but it may optionally arise from the backward
pathway.

The data actually stored in each stage are generated by logic
that operates on, and performs various combinations of, the
inputs from all three incoming pathways, Feedback values and
recursion values may be combined with the ascending image value
in any proportion, summed or differenced with it (with or without
constant offsets), or combined by any Boolean operation. &
schematic representation of the relationships between the forward
and retrograde transformation operators and the spatial
neighborhood of a single pixel is shown in Figure 3. In this and
other figures, the recursive pathway is shown originating from
the forward transform unless otherwise specified, but origin from
the retrograde transform is an option in all cases.

13

If the preceding and succeeding fields are oconsidered to contain
future and past instances of a field, respectively (as is true in
a dynamioc image), then forward transformation corresponds to a
path from the future, recursion to a path from the present, and
retrograde transformation to one from the past, The weighted sum
of the three paths may be be set up as a convolution operation on
the temporal neighborhood of a pixel. This may ocour at the sane
time as the convolution operation is being performed on its
contemporary spatial neighborhood (i.e., eight spatial neighbors
and two temporal neighbors.) Combined uses of the retrogride
pathway to implement both feedback loops and temporal
convolutions can also be envisioned; their utility is a matter
for exploration.

Figure 4 shows some details of the inter-stage combining logic to
clarify the interaction of the pathways in the temporal domain.
The outputs of the forward neighborhood operators (OPF) and the
retrograde operators (OPB) are shown for stages N, N+1, and N+2,
together with the oonpining logic linking them. At every PIPE
stage, data from any of these pathways may be subjected to @
comparison operation (e.g. thresholding) to transform arithmetic
data to Boolean data., The arbitrary Boolean and/or arithmetic
functions shown in this figure represent a versatile set of
possible operations (including arithmetic-to-Boolean conversion)
that may be applied to each data stream prior to combination by
table lookup.

It is helpful in understanding the functions of these processing
pathways to consider each in isolation first. If only the forward
transformation path is operative (i.e., the weights for the
retrograde and recursion operators are set to zero), we have a
simple 1mase'p1peline processor which can sequentially apply a
variety of neighborhood operators to the'series of images flowing
through it. It can perform either arithmetic or Boolean
neighborhood operations and, by thresholding, convert an
arithmetic image into a Boolean image. For example, it might be

14

OT80T BuUTUTqUod aBejsIoquT O4L i FMNDIA

s*+N -~
840
WORIUN
i_.c.u_.i ".I.J.
w4 opuBonoy |} on
| 940 |

85)
91807

™ . ;i-s%
obelg Guman s J '
o8 . . wegd premod “..:.J.
. | . t n |
..“ 340 .“
| 0
. L]
onewnpY JOIpUe
wesjoog lsniwy
T4+N® :

used to smooth an arithmetic gray scale image, apply edge
detection operators to it, threshold the “edginess" value to form
a binary edge image and then apply Boolean neighborhood
operations to find features in the edges. The operation types and
parametric values for these operations would be set individually
for each stage by'the stage control units, which in turn would be
instructed (for example from the host) via the input marked
"stage-by-stage processing control” in Figure 2.

A second single-path case results 1f both the forward and
retrograde paths' combining functions are zero. Assume that
images had previously been loaded into the processing stages. The
recursion path would then'cause the image field in each stage to
pass through the forward or backward transformation operation
recursively, while the images "marched in place®, A variety of
relaxation operations can be implemented in this way.

For the final single path case, consider vhat happens vhen the
weights assigned to the forward and recursive paths are zero,
leaving only the retrograde pathway active. When the set of suoch
paths is considered in isolation, it becomes clear that it forass
a processing chain that is a retrograde counterpart of the
forward pipeline., It would, in fact be possible to aelect
appropriate retrograde transformations, insert fields of data at
the back of the device, process them through to the froat, and
get the same result as running the system in the normsal
direction. The purpose of this is not to provide a bidirectional
image processor, but to permit input (at the "output® end of the
device) of synthesized images. Such images influence the
processing of the normally flowing images by direct interaction,
and correspond to "expectancies®, "models®", "hypotheses®, or
"attention functions.® '

The retrograde images are not only able to affect processing of

the forward images, but are affected themselves by interaction
with them. (The effects that the two image sequences axert on

16

egch otiner may be different because the neighborhood operators on
the forward and backward paths are independent), Retrograde
images will usually be uenerated by knowledge-based processes in
higher level components of the host system. They may initially
appear in Boolean form, but, as shown in Figure 5, problqion is
made for all four possible combinations of arithmetio and Boolean
inputs and outputs in the combining logic between stages. This
permits a descending Boolean image to be instantiated into
arithmetic image values by interaction with the ascending
arithmetic image. This occurs in the same stage in which the
ascending arithmetic image representation is thresholded to
become & Boolean image., Both the ascending data image and the
descending “hypothesis®™ image can pass across this interface. A
major function of PIPE will be to explore the effectiveness of
various approaches to hypothesis-guided iconic image processing.

Boolean information can be processed in an interesting way by
combining the outputs of the forward operator from the previous
stage and the recursive input from the current stage. Conasider
the case of a single stage treated in this fashion for eight
field-times, using "SHIFT then OR" as the combining operation. If
the incoming images from the previous stage have Boolean values
resulting from successive independent operations and comparisons,
such a stage will accumulate images from the eight preceding
Boolean operations into an image composed of eight-bit Boolean
vectors, Subsequent Boolean neighborhood operations may apply
independent operators to each bit plane of a neighborhood of such
vectors.

PIPE is not a simple parallel image pipeline. Each stage in the
pipeline of images contains its own, internal, pipeliné which is
used to perform the neighborhood operations. That is, the
operations are not applied to every pixel neighborhood of each
stage simultaneously, but are performed sequentially, raster scan
fashion, over the stage within one field time. Of course, the
stages all operate in parailel, so that the whole pipeline of

"

Recursion Path

FIGURE 5: Interactions between arittmetic and Boolean images

images is processed in a single field time. The sequential nature
of the within-stage processing, together with the existence of
the recursive data path, could pose problems in perforaming the
neighborhood computations. If each neighborhood operation were to
be computed using values taken directly from the image, then
those points above and to the left of the central pixzel in the
neighborhood would already have been processed, and perhaps
altered, by previous pipelined operations. To avoid such
problems, the pixel neighborhoods being processed in each field
are read/vwrite shifted so that the incoming pixels from the
pipeline, which are continuously updating a field belonging to a
later image epoch, do not appear in the neighborhoods of pixels
being processed 1h the ocurrent image epoch. Between-field
read/write address differences simulate time delays to compensste
for this staggering amd thus insure that homologous pixels froms
each field are received by the combining logic. The manner in
which this staggering is related to the interactions of the
various pathways is shown in Figure 6. The required parameters of

" the simulated delays are illustrated in the figure as actual

delay lines for clarity, although there are no such physical
delay elements in the machine,

PIPE has a variety of features and operating modes in addition to
the neighborhood operations discussed above. Its input stage has
the ability to fill one field buffer with the difference between
the contents of either buffer and the incoming image. In this
fashion, it can force PIPE to process only those portions of the
image which change from field to field.

Another option allows Pipe to accept definitions of "regions of
interest® in an image, and to cause any stage to apply complete
alternative operation sets within each of its regions of
interest. Regions of interest for-an image buffer are specified
via a bit map resident in the other image buffer of a stage. In
this fashion PIPE can act as an MIMD machine, in that different
operations can be performed over different portions of the data

14

gaf8qs Usanjaq SUOFIRIado IjTam/peal Jo Sutasddels 9 MUNDLA

stream on a pixel-by-pixel basis. This feature may be used to
generate globally non-linear image processing operations, as for
example in preserving edges while smoothing non-edge portions of
an image. Up to 256 alternative operation sets are specifiable in
principle by the bit-mapping procedure. The actual number
available will depend on the amount of memory attached to each
stage. In the protoype device, sixteen will be available, The
nature of the available alternative operation sets, like all
other apects of stage operations, may be changed between fields,

A further mode of operation allows multi-resolution image
processing. For example, PIPE can use its forward image
processing path to reduce an image into sucocessive half-
resolution reprcaehtations, and its retrograde path to construct
successive double~resolution representations, thus implementing
form of multi-resolution pyramid. Processing within any level of
such a pyramid can be accomplished through use of the recursive
pathway, while interactions between levels of the pyramid ars
accomplished through the forward and retrograde image paths. In
interlevel interactions, the mapping of pixels into higher or
lower resclution images occurs sutomatically. Multi-resolution
image processing using PIPE is discussed further below. Another
useful feature of PIPE is the provision of four ‘uildecard’
busses, which allow images to be transferred from a stage to any
or all other stages in a single field time. These busses allow
quick access to, and dissemination of, intermediate results. They
also make it possible to connect the stages into a ring-like
structure, or to bring synthetic images from the host to aay
stage.

Eunctional Details of PIPE Stages:

dnput Stage

A special input stage is used to capture images from input
devices. This allows PIPE to accept digital or analog signals

21

from any device using standard RS-170 television signals and
timing. Analog signals are digitized by an eight-bit real-time
digitizer. The input stage is capable of acquiring a digitized
image of 256 x 240 pixels while remaining synchronitoq'with RS-
170 signals. Alternatively, it can capture 256‘x.256 pizel images
from non-RS-170 signals while internally employing non-standard
pixel rates, It can continually capture such 1nuges»it standard
television field rates, and place them in either of the two field
buffers contained in the input stage. While storing an image into
one of these buffers the input stage can also simultaneously
store an image, such as a difference imzge, formed by an ALU
operation between the incoming image and a previously captured
image, into either buffer. The contents of either of the buffers
in the input stage can be sent to the first of the processing
stages, while the next image is being acquired. .

PIPE accepts eight-bit input data, and this precision is
maintained throughout the machine. Intermediate arithmetic
operations within subsequent stages are carried to sutticignt
precision to insure no loss of accuracy when the result is
rounded to eight bits for transmission to subsequent stages. The
data may be treated as either unsigned eight=-bit numbers, or as
signed numbers with the high bit indicating the sign. Unsigned
input data may be processed-as such, until an operation which
generates negative values occurs, and treated as signed data
thereafter.

Processing Stages

The first processing stage is one of a series of modular
intermediate processing stages (MPS). The MPSs are the *stages"
described in the preceding sections, and are the elements which
perform most of PIPE's processing. All MPSs are of identical
modular construction, and are physically interchangeable simply
by switching card edge plugs and circuit boards, Thus, any MPS
can operate at any position in the processing chain, and the

22

processing chain can have a variable length. Eight MPSs are
planned for the present development phase of PIPE,

The Nth MPS accepts three eight-bit 256 x 256 pixel images as
input. These come from the forward output of the N-1st MPS, from
the recursive output of the operation performed on the previous
contents of the Nth MPS, and from the retrograde output of the
N+1st MPS., Each data stream may consist, independently of the
other two, of arithmetic or Boolean (eight-bit Boolean vector)
data, but a given data stream entering a MPS must be entirely
Boolean or arithmetic within any single image field.

Before generating a final eight=-bit image from the three data
streams, each MPS performs comparison, Boolean, and/or arithmetiec
operations on each them independently and simultaneously,
according to the type of data present. If an input stress
contains arithmetic data, either comparison or arithmetio
operations are possible by table lookup. The comparison
(conversion) operation may thus be a multiple window comparison,
which converts an arithmetic pixel to a Boolean vector, with the
bits of the Boolean vector independently specifiadble. The
arithmetic operation can oonsist of any function of a single
argument. If an input stream contains Boolean data, the Boolsan
operation can perform functions such as a 0 - 7 place barrel
shift, and apply AND (NAND), OR (NOR), and EXOR operations to the
result (See Figure 7). :

The resulting three Boolean and/or arithmetic data streams are
then combined through independently-programmable full-function
ALUs into a single arithmetic or Boolean data stream. This data
stream (or when enabled, a DMA data stream provided by an
external device) is then used to load either of the two
selectable field buffers within the MPS, Alternatively, either or
both buffers can be filled using the wildcard busses. The
contents of both of these field buffers are then available to
subsequent operations of the MPS. External device access to these

23

buffers is also available; an external device may read from or
write into efither buffer in a random access manner at 400,000
pixels/sec., wWith auto=indexed addressing supported on command,
The wildoard busses provide streaming access to external devices
(including monitors) at pixel rates. .

The hardware that implements those MPS functions subsequent to
the field buffer storage step is physically contained on a
separate circuit card to allow it to be replaced with other
special functional modules, should this be desirable. This
circuitry is represented by the area labeled “section 2" {n
Figure 7. In operation, an eight-bit image is first selected by
reading the ocontents of one of the two field buffers in the MPS,
The image is transformed by an arbitrary, programmable, single-
valued mapping function, and the pixels of the resulting image
are subjected to two neighborhood operators, of which there are
two kinds. The first type of neighborhood operator is an
arithmetic convolution operation, while the second is a Boolean
operation. For either operator, the neighborhood of operation is
(at present) 3 x 3 pixels square, and the operation i3
accomplished in 200 nsec. Pixel neighborhoods are generated by
passing the data stream through a 3=line buffer.

In the arithmetic case, the convolution operation uses arbitrary
positive or negative eight-bit neighborhood weights, and
maintains twelve-bit accuracy in its intermediate results. The
final eight-bit arithmetic result entering the busses is produced
by non-biased rounding, from a 20-bit sum. This insures that no
loss of precision occurs within a stage due to arithmetic
underflow or overflow. The full eight bit precision of the input
is thus maintained between stages throughout the machine. In the
Boolean case, the neighborhood operation consists of arbitrary
Boolean operations (a sum-of=products AND=OR array equivalent)
between the set of all the pixels of the data neighdborhood, and
the set of all corresponding pixels of an arbitrarily specified
comparison neighborhood. Any bit of either neighborhood may be

a¢

aBejs 3ursssooad 8 JO auNj0djpuAIe TEBWIOQUT aYL L THNOId

EEEE— —— S——
" T doN _
jonwed
| - 3 40N
| | oo Py | amemeerd
| “OI8!85...... miedued | - wed
0
wesioog pr—
- _ b doN led i3 v
...... o P pow— ~ | oo weeroen
- | o _ B e
oooooooo = : o0 wor
- 840 woi4
_ - od premyoeg
1] xmume ‘#dg vesioog
soreseveg | nNeuNILY
meeduod - N oing
440 woig
4 premsog
a sns
$n

independently defined as true, false (complemented), or "don't
care”, Each of the eight bit-planes forms an independent set of
inputs, subject to independent neighborhood operations, As a
result, eight independent one-~bit results are obtained from a
single pass of the data through the pipelino,?&iolding an
orthogonal eight-bit Boolean vector as output. "

Two neighborhood operators'(NOP1 and NOP2) are applied
independently and simultaneously. They operate on the same data
stream, using neighborhood operations which may be different.
Their outputs may be independently subjected to a second
transformation by either of two programmable functions. The first
of these is a lookup-table mapping function. This transformation
may be a function of two arguments. If two arguments are used,
one is taken from the homologous pixel of the field buffer which
is not the source of the image being subjected to the
neighborhood operators. The number of bits used from the two
arguments must total twelve, For example, the sizx most
significant bits of each. If only one argument is used, all eight
bits are available, the remaining bits being interpreted as
"don't care®, The other function is an ALU with two eight-bit
inputs operating on the same sources. The data stream arising
from either of these operations applied to one of NOP1 or NOP2 (a
result denoted by OP! and OP2, respectively) is selected to
become the forward output (OPF) of the MPS, and the data strean
arising from the operation applied to either the same or the
other of NOP1 and NOP2 becomes the backward output (OPB) of the
MPS,

A "region of interest® operator allows each MPS to switch between
the normal (OPF, OPB) operation set and alternative (OPF*, OPB')
operation sets on a pixel-by-pixel basis, In this mode, the other
image buffer of the stage contains a map of the operations to be
performed on homologous pixels of the image buffer undergoing
operations, Potentially, up to 256 different alternative
operation sets could be specified by the eight bit contents of

2L

each pixel in the map. In practice, the number of alternative
operation sets selectable during a field processing time will be
limited by the amount of memory available within the stage to
store them, which may be enlarged at will., The operation sets
stored in the available memory may be changed arbitrarily between
fields. This allows earlier image operations, such as edge
detection, to guide later processing.

PIPE allows the construction of multiresolution, "pyramid",
sequences of images. Pyramids have been found useful in a large
number of image-processing spplications. They have an added
utility in a strioctly local processor like PIPE because they
allow information from spatially distant regions to be made
local. The basic operations available in PIPE for constructing
image pyramids are sampling and pixel doubling. Sampling is used
to reduce the resolution of an image, while doudbling is used to
increase the size of an image. A further option allows sampling
to occur in staggered pixels in alternate rows, to generate
samples with uniform (square root of two) neighbor distances.

Both the sampling and doubling operations are performed by
manipulating address lines within a stage. The places in the
stage at which the operations are performed are different because
of timing considerations. Sampling is achieved by incrementing
the source image addresses twice as fast as the destination
addresses, That is, on each row, the first pixel in the source
image iswritten to the first pixel in the destination image. The
second source pixel is also written to the first destination
pixel, overwriting the previous value. The address of the
destination pixel is then incremented, and the procedure is
repeated. The same process is used to overwrite every other row
in the destination image. The result is that the destination
image is one quarter the size of the source image, and occupies
the upper left quadrant of the image buffer. Each pixel in the
destination image is written out four times, to result in the
reduced-size image. This is not wasteful because the source image

a7

is being read at field rates and the new image i{s created in a
single field time.

Doubling is accomplished by the inverse of the sampling proocess,
That is, the addresses in the source image are now 1noroqpnted at
half the rate of those in the destination image. For each row in
the source (reduced-resolution) image, two identical rows are
output in the enlarged image. For each pixel in each row of the
input image, two identical pixels are stored in the output image.
This results in an enlarged image that has four times as many
pixels as the input image.

The simple operations of image sampling and pixel doubling are
not of themselves very useful except for a narrow range of
applications., Combined with the other operations in PIPE,
however, a much broader class of operations hecomes poasible. The
sampling process occurs as the image enters a stage. buffer. This
means that a number of operations aan be performed on the source
image prior to constructing the reduced-resolution version. Of
thgse, perhaps the most useful is the nei;hborhobd operator,
which can be used, for example, to smooth the image before
sampling. By iterating the neighborhood operation prior teo
Sampling, the effects of neighborhoods larger than three by three
can be obtained, allowing, for example, the construction of
"Gaussian® pyramids using the hierarchical discrete correlation
procedure of Burt (1980),

In the inverse situation, when the image is magnified, the
doubling occurs as the image leaves a stage buffer. Once agaipn,
operations can be performed on the doubled image before it is
stored into another stage buffer. In this situation, however, the
three by three neighborhood is not as valuable as in the sampling
case. This is because the "field of view" of the operator does
not encompass all the neighbors of a pixel (the pixels have been
enlarged to two-by-two blocks). To include all the neighbors, at
least two iterations of a neighborhood operation must be applied

28

to the image. This means that expanding a pyramid may take twice
as long as compressing it. (When the three by three operator is
replaced with a larger one, this asymmetry will be overcome).

An important issue in dealing with images of varying sizes is how
to overcome edge effects that arise when the aeighborhood
operator'is applied. This issue is dealt with in the same manner
for all sizes of images. It is the programmer's responsibility to
ensure that each stage knows the size of the images in each of
its buffers. In principle, it would be possible to make all
border pixels belong to a region of interest. Special
neighborhood operators could then be applied there to overcone
the edge effects. PIPE provides as a default solution the
replication of border pixels. If a neighborhood has a row or 8
column that lies outside the boundaries of the image (either
beyond the image buffer itself or beyond the extent of a low-
resolution image), the non-existent pixels are replaced by the
pixels in the border row or column., For a three by three
neighborhood, this is equivalent both to reflecting the image and
to repeating the border pixels. This is achieved in the same way
as the varying resolution images are constructed, i{.e.,, bY
manipulating the address lines of the buffer.

Qutput Stage

The output stage fulfills a role at the end of the processing
chain similar to that of the input stage at its beginning. The
final MPS delivers its forward image output (OPF) to either one
of a pair of field buffers inm the output stage, and can
simultaneously read from the other buffer of the output stage.
The data read from the output stage is used as the input to the
retrograde (feedback) path of the final MPS. Without interrupting
the image-processing, either buffer of the output stage can be
read from or written into by an external device, which is both
the consumer of the processed forward data-flow and the supplier
of data for the retrograde path.

29

Stage Control lnits

Once the pipeline modules have been set up, the individual
operations to be ocarried out must be ohoson,'and the host device
must load each stage with appropriate instructions for processing
successive fields. Each stage has a stage controller that is
loaded by the host device. Interfaces between the control units
and host devices are 16-bit input and output ports, Each stage-
control unit can completely reconfigure the operations and
operating parameters of its associated stage on the basis of
current or stored instructions from the host device. Changes are
made in the interval between image fields. -

The stage control units store and select multiple alternative
configurations for their stages. The sequencing orders of these
configurations are provided by the host device. Programming PIPE
thus consists of specifying to the control units the operations
and operation sequences to be performed by each atasc{ and
loading the corresponding operators, parameters, and tables into
the stages. In operation, thé host device may instruct the stage
control units to select a stage progranm, instruct it to branch in
the specified sequence of operations, or permit it to follow the
pre-set sequence of operations (which may contain branch points
on repetition counts.) For program development, the contents of
any buffer and the output of any operator in the system can be
displayed on a video monitor, with or without freezing the
contents of the buffer, and the whole processor can be
singlestepped.

Programming

During the design phase of PIPE, small programs were uritten for
the machine to evaluate the utility of its architecture, Some of
these are described in Kent et al, 1984, Ultimately PIPE will be

40

programmed by utility programs currently under development. A
group at Cooper Union under the direction of George Chaiken is
working on emulators and on assemblers for setting up operations
of the the processing stages, while John Roach of Virginia
Polytechnic Institute has been developing a Prologue-baseg system
which will automatically generate the sequences of stage
operations required to carry out image processing tasks defined
in a high-level language. This system has already successfully
derived programs of the level of complexity of 80bel'operators.

Discussion

PIPE i3 designed as a front-end proocessor for low-level iconic-
to-iconic image processing. It is intended to perfors
transformations on images to extract features similar to those in
the primal sketch of Marr(1976). These features make intensity
changes and local geometric relations explicit in images, while
maintaining the spatial representation. In this, PIPE differs
from many processors designed for image-processing. These other
processors are usually designed to perform both local and global
image-processing tasks, often in an interactive environment.

PUMPS (Briggs at al., 1982) is an example of a multi-user system
in which various task processing units are allocated from a pool.
Each processor is specialized for a particular purpose, and
images are transformed by passing them through a sequence of
different processors. PIPE, on the other hand, consists of a
sequence of identical stages, each of which has the power to
perform several different operations on images. The programmer
has the responsibility of specifying the task of each stage to
ensure that the desired goal is attained. PIPE is also dedicated
to a single user, although pipelines are easily constructed from
a set of identical components, allowing each user to have a
specially tailored PIPE system. In fact, a set of PIPE processors
could be added to the pool of available processors in PUHPS, and

3¢

used as a resource in the same way as the other prooessors,

Several other systems have components that perform some of the
functions of PIPE. Usually, however, they operate on a single
image at a time. For instance, the PICAP II system (Antonsson, &f
Al., 1982) has a filter processor, FIP, that performs some of the
operations of a stage in PIPE, It also has other processors that
are specialized for operations such as image segmentation, FLIP
(Luetjen et al., 1980) is similar to PIPE in that it has a number
of identical processors, but it usually uses these processors {n
parallel on subimages of the same image instead of on successive
versions of complete images. FLIP also allows greater flexibility
in the connections between its processors. In PIPE, processors
are normally connected only to their immediate predecessors and
successors, although the wildcard busses allow selective but
limited connections between arbitrary stages., FLIP, on the other
hand, provides connections between all processors, allowing the
processors to be arranged to suit each particular task.

Other special processors for image processing includc the
massively parallel processor, MPP (Potter, 1983), and ZNOB
(Kushner gt al., 1982), which is a more general parallel
processor but has been studied extensively with regard to its
abilities to perform image proocessing tasks. MPP has 16k
processors, and is a true parallel processor, !xpcricuob with the
processor is limited, but a major difficulty appears to be the
problem of tranaferring the data to each individual processor,
and getting the results out of the machine. MPP does not have.a
true neighdborhood operator, although each processor can be
connected to four of its neighbors and use the pixel values there
to compute its result, It is not clear that MPP has any advantage
over pipelined systems, because images are usually obtained from
an imaging system or storage medium in a stream, and sent to
successive processors in the same fashion.

ZMOB conaists of 256 processors connected by a ring-shaped high

32

speed communications system, The communications link operates
fast enough to make each processor appear to be connected to all
others., Each prooessor is a general-purpose eight bit
microcomputer, with 63K bytes of memory. Thus, many different
computations can be performed at the same time, either on the
same or different data. For image-processing applications, images
are usually broken into parts, each of which is sent to a
different processor. Many operations require interactions between
the parts, especially when neighborhood operations are performed.
This gives rise to the need for communications between
processors., Given that the communications link is much faster
than the procesiora'cyclp time, there is very little overhead
involved. But upgflding the processors might cause data
transmissions to become significant. While PIPE is clearly less
powerful than ZMOB, it is better suited to its role of low-level
image proocessing.

A recent survey by Reeves (1984) divides image-processing tasks
into two classes. Low level image processing usually modifies
parts of images, but maintains the image array. Higher level
processing, however, works on symbolic representations of the
contents of images. Low level processing has usually given rise
to architectures based on single instruction stream, multiple
data stream (SIMD) structures. The higher level functions are
usually carried out using processors based on multiple
instruction stream, multiple data stream (MINMD) structures. The
design of PIPE allows it to act as a SIMD pipeline, or as a
(restricted) MIMD pipeline. The MIMD mode is entered whenever the
region-of-interest operators are used. The limitations on these
operators are that there are at most 256 different operators
avajilable per stage, and that using the region of interest
generally precludes using some other operntors,'auch as the
functions of two arguments. Using the retrograde pathway to
insert expectations into the image analysis process also blurs
the distinction between high level and low level processes.

33

A processor that has many features in common with PIPE is the
cytocomputer (Sternberg, 1979). This machine performs
neighborhood and table-=lookup operations, but lacks most of the
other features of PIPE, It does not have the retrograde or
recursive data paths, has no region-of=-intereat operators, and
cannot perform multi-resolution image processing. Neither ocan it
combine more than one image in an operation., Even without these
features, however, the cytocomputer has shown itself to be
extremely useful for low level image processing.

While several theoretical designs have been proposed for
hierarchical (pyramid) processors (e.g., Dyer, 1981, Uhr gt al.,
1981), there is apparently only one that has actually been
constructed (Tanimoto, 1984). This is a SIMD machine consisting
of a pyramidal array of processing elements connected to a
general-purpose computer. Each processing element connects to
thirteen other elements, comprising its eight neighbors at the
same pyramid level, its four children at the level below, and its
parent ‘at the level above, Neighdorhood operations can be
performed on this set of elements, as well as pointwiae
operations and image input and output. Tanimoto presents a numbder
of algorithms that take advantage of the pyraamid structure to
perform common image processing operations. The pyramid processor
has an advantage over PIPE in the explicit links to its children.
To achieve the same result with PIPE requires complex
manipulations using the region-of-interest operator and a bit-map
of four values (one for each child) in the alternate buffer,
PIPE, however, can be reconfigured to produce overlapped
pyramids, using larger neighborhoods, and is not restricted to
pyramid-based operations.

Conclusions
This paper has described a new image pre=processor, consiating of

a sequence of identical stages, each of which can perform a
number of point and neighborhood operations, An important feature

34

H

of the procesaor is the provision of forward, recursive, and
backward paths to allow image data to participate in temporal as
well as spatial neighborhood operations. The backuard.pathway
also allows expectations or image models to be 1nso”‘;§‘1ito the
system by the host, and to participate in the procccaiig.in the
same way as images acquired from the input device. The region-of-
interest operator is also a powerful, and unique, feature of
PIPE, allowing the results of feature-extraction processes to
guide further image analysis. PIPE also provides a multi-
resolution capability, enabling global events to be made local.
This 1s important in a machine that has only local operators.
Much research needs to be done to explore the capabilities of the
device but early oxperinehts indicate that the system will have a
wide range of applications in low-level real-time image
processing.

25

b

References

D. Antonsson, B. Gudmundsson, T, Hedblom, B, Kruse, A Linge, P.
Lord, and T. Ohlsson, PICAP = A system approach to image
processing, IEEE Trans. Computers C-31 10, Ooctober 1982, 997=-
1000. |

F. A, Briggs, K. 8., Fu, K. Hwang, and B. W, Wah, PUNMPS
architecture for pattern analysis and image database management.
IEEE Trans. Computers C-31 10, October 1982, 969-983.

P. J. Burt, Fast hierarchical correlations with Gaussian-like
kernels. Proc., Fifth International Joint Conference on Pattern
Recognition, Miami, Florida, 1980.

C. R. Dyer, A quadtree machine for parallel 1-agé'prooessing.
Knowledge Systems Laboratory Technical Report KSL 51, University
of Illinois at Chicago Circle, 1981,

E. Kent, M, Shneier, and R, Lumia, PIPE - Pipeleined Image
Processing Engine, J. Parallel and Distridbuted Computing, 1984
(in press).

T. Kushner, A, Y. Wu, and A Rosenfeld, Imnage processing on ZNMOB,
IEEE Trans. Computers C-31 10, October 1982, 943-951.

K. Luetjen, P, Gemmar, and H., Ischen, FLIP: A flexible multi-
processor system for image processing. Proc. Fifth International

Conference on Pattern Recognition, Miami, Florida, 1980.

D. Marr, Early processing of visual information. Phil. Irans.
Royal Society B.275, 1976. :

Jo L. Potter, Image processing on the Massively Parallel
Processor. IEEE Computer Magazine 16 1, January 1983, 62-67.

36

| A. P. Reeves, Parallel computer architectures for image

processing. Computer Yision, Graphica, and Image Processing 25,
1984, 68-88,

S. R. Sternberg, Parallel architectures for inage prbcosaing.
Proc. 3rd International IEEE COMPSAC, Chiocago, 1979, T12-T17.

S. L. Tanimoto, Sorting, histogramming, and other statistical
operations on s pyramid machine. In Multiresolution Image

Processing and Analysis (A. Rosenfeld, ed.), Springer-Verlag,
Berlin, 1984,

L. Ubr, M. Thompaon, and J. Lookey, A 2-layered SIMD/MIMD
parallel pyramidal array/net. IEEE Workshop onm Computer

Architecture for Pattern Analysis and Image Database Hanacclcnt,
Hot Springs, Va, Nov 1981, 31-34,

7

31

FIGURE CAPTIONS

Eigure 1. The PIPE processor and its relations to other elements
of the NBS image-processing configuration. T

‘4 s
At
- i »
- ..

Figure 2. Major connections between processing ltacob‘la‘PIPE.

Elgure 3. Generation of image-flow paths from simultaneous
application of independent neighdborhood operators,

Figure 3, The interstage combining logic.
Eigure 5. Interactions between arithmetic and Boolean images.
Eigure 6, Staggering of read/write operations between stages.

Figure 7. The internal architecture of & processing stage.

38

